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Fluidity, anisotropy, and velocity correlations in frictionless, collisional
grain flows
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We show that the fluidity, made dimensionless by the square root of the granular
temperature, measured in numerical simulations of granular shearing flows of frictionless
spheres, may be predicted over a wide range of volume fractions using existing kinetic
theories. We also show that the departure of these predictions from the measurements in
the limit of random close packing is due to the reduction of the dissipation because of
velocity correlations and the contribution of the anisotropy of the second moment of the
velocity fluctuations to the shear stress. The former causes the granular temperature to
increase without bound, the latter ensures that the pressure and shear stress behave in the
same way with temperature. This combination of mechanisms may also be relevant to the
shearing of emulsions, dense colloids, and non-Brownian suspensions.
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I. INTRODUCTION

Continuum models of dry granular flows rely on constitutive relations for the stresses. In the past
decade, inertial granular rheology [1] based on a phenomenological local relation between the ratio
of the particle shear stress s to the particle pressure p and the inertial number (the shear rate γ̇ made
dimensionless using the particle pressure, diameter σ , and mass density ρp) that includes an initial
yield has become the paradigm for dense granular flows at large solid volume fraction ν.

However, several nonlocal effects cannot be captured by the inertial rheology, including the
existence of a minimum height for having steady flows over inclines [2,3] and motion observed
in regions in which the stress ratio is less than the yield value [4]. The introduction of the concept of
granular fluidity g [5], defined as γ̇ p/s, and a partial differential equation that governs its temporal
and spatial evolution in the flow permits these limitations to be overcome [6,7]. Fluidity was also
seen to collapse the data for inhomogeneous flows in which the corresponding components of the
stress differed [8].

Fluidity was introduced in the context of emulsions [9] and had the clear physical meaning of
inverse viscosity; however, the interpretation of the fluidity in granular flows is less apparent and
controversial [10]. Recently [8], discrete numerical simulations of homogeneous and inhomoge-
neous shear flows suggested that the granular fluidity is the product of a function of the solid volume
fraction and the ratio of the square root of the granular temperature T to the particle diameter σ .
The granular temperature is a measure of the intensity of the particle agitation that is crucial in
kinetic theory of granular gases [11,12]. Two possible explanations for this have been proposed [8]:
one, that kinetic theories of granular gases, originally intended for dilute flows, apply also to dense
flows; the other, that fluctuation-activated processes similar to those introduced by Eyring [13] are
responsible [14].
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Here we wish to first place the results of the numerical simulations [8] that relate fluidity to
the granular temperature in the context of existing kinetic theories over a broad range of volume
fractions. We then focus on dense shearing flows for which departures are observed.

II. THEORY

Although several kinetic theories of granular gases have been developed over the past 40 years,
all predict that the granular pressure and shear stress have the forms

p = ρpf1T (1)

and

s = ρpσT 1/2f2γ̇ , (2)

where f1 and f2 are known dimensionless functions of ν, both directly and through the radial
distribution function at contact χ0 for a colliding pair of spheres [15], the coefficient of normal
restitution e between pairs of colliding spheres, and σ γ̇ /T 1/2, either directly or through dimension-
less measures of the second moment of the velocity fluctuations [16]. With Eqs. (1) and (2), the
granular fluidity is

g = γ̇ p

s
= T 1/2

σ

f1

f2
, (3)

consistent with findings in numerical simulations [8].
The detailed forms of the coefficients f1 and f2 depend on the approximations that are employed

in deriving the constitutive relations of kinetic theory. If the deviatoric part of the tensor of the
second moment of the velocity fluctuations is assumed to be small compared to its isotropic part and
only terms proportional to the shear rate are retained in the constitutive relations, the coefficients
f1 and f2 are functions only of ν and e (Navier-Stokes order). If, on the other hand, anisotropy
in the second moment tensor of the velocity fluctuations is taken to be significant, the constitutive
relations also contain terms of higher order in the shear rate through the dependence of f1 and f2

on σ γ̇ /T 1/2 [16]. Explicit forms of f1 and f2 for dense flows in the theory of Saha and Alam [16]
are provided later.

Figure 1 shows a comparison of the measurements of the dimensionless fluidity σg/T 1/2

obtained in discrete numerical simulations of homogeneous shear flows of rigid [17] and slightly
compliant [18,19] frictionless spheres, with a coefficient of restitution equal to 0.7, and the
corresponding ratio f1/f2 from the isotropic Navier-Stokes-level kinetic theory of Garzó and Dufty
[20] and the anisotropic higher-order kinetic theory of Saha and Alam [16]. The anisotropy is
associated with the components of the second moment 〈CC〉 of the velocity fluctuations C with
respect to the principal axes in a steady homogeneous shearing flow, in which the x and y axes are
in the directions of greatest stretching and compression, respectively, and the z axis is normal to
them,

T

⎡
⎢⎣

1 + λ2 − η 0 0

1 + λ2 + η 0

0 0 1 − 2λ2

⎤
⎥⎦, (4)

where T = 〈C2〉/3, η is the difference in strength of the velocity fluctuations in the shear plane
parallel and perpendicular to the flow, and λ2 is the difference in strength of the velocity fluctuations
in the shear plane and perpendicular to it, both made dimensionless using T .

There are two points to be made in regard to this figure. First, the predictions of the kinetic
theory of Saha and Alam are in excellent agreement with the numerical simulations for almost
the entire range of solid volume fractions, while those of the kinetic theory of Garzó and Dufty are
qualitatively similar, but slightly underestimate the measurements. That is, measurements of fluidity
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FIG. 1. Dimensionless fluidity as a function of the solid volume fraction in steady, homogeneous shearing
flows of frictionless spheres with a coefficient of normal restitution equal to 0.7: measurements in event-driven
(circles, [17]) and soft-sphere (squares, [18]; triangles, [19]) molecular dynamics simulations, predictions of
kinetic theory at the isotropic Navier-Stokes order (dashed line, [20]), and the anisotropic higher-order kinetic
theory (solid line, [16]).

can be predicted by kinetic theories over a wide range of volume fractions. Second, both theories
fail in reproducing the drop in the dimensionless fluidity at volume fractions approaching random
close packing (ν = 0.64). A similar drop in the dimensionless fluidity is also observed by Zhang
and Kamrin [8] in the numerical simulations of frictional, very inelastic spheres. The remainder of
this work will address the reason for the drop in homogeneous flows of frictionless spheres in the
context of the kinetic theory.

At volume fractions greater than 0.49, χ0 is large compared to ν and the contribution of transport
to the stresses is less than 10% that of collisions. In this dense limit, the second-order (Burnett)
theory of Saha and Alam involves R = σ γ̇ /8T 1/2, a dimensionless measure of the shear rate, and
η. To second order in R and η, the coefficients f1 and f2 are

f1 = 2(1 + e)ν2χ0

(
1 + 224

105
R2 + 112

105π1/2
ηR

)
(5)

and

f2 = 4(1 + e)

5π1/2
ν2χ0

(
1 + π1/2 η

8R

)
. (6)

The Garzó-Dufty theory involves only the first of the terms in large parentheses in Eq. (5) and
a slightly different dependence on e in Eq. (6). The quadratic term in Eq. (5) is a Burnett-order
nonlinearity; the terms that involve η in Eqs. (5) and (6) permit the isotropic and deviatoric parts of
the flow to contribute, respectively, to the deviatoric and isotropic parts of the stress. Because λ2 is
second order in R and η [16], its contributions to the stresses is greater than second order and can
be ignored.

Using Eqs. (5) and (6) in Eq. (3) gives

σg

T 1/2
= 4(105π1/2 + 224π1/2R2 + 112ηR)

21(8 + π1/2η/R)
. (7)
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In steady homogeneous shearing, η and R are determined by the in-plane deviatoric component and
the trace of the balance of the second moment of the velocity fluctuations. The balance equation
relates the collisional flux � and collisional production � of second moment.

The equation for the in-plane deviatoric component of the balance is

γ̇ (�xx + �yy ) = �xx − �yy, (8)

where, from Saha and Alam [16], at second order in R and η,

�xx + �yy = 4(1 + e)ρpν2χ0T

π1/2
(9)

and

�xx − �yy = 1008(1 + e)ρpν2χ0T
3/2

105σπ1/2
[(1 − e)(2π1/2R + η) + 2η + 2Rπ1/2]. (10)

Therefore,

γ̇ σ

T 1/2
5π1/2 = 12[(1 − e)(2π1/2R + η) + 2η + 2Rπ1/2] (11)

or

10π1/2R = 6π1/2[(1 − e) + 1]R + 3[(1 − e) + 2]η. (12)

Thus,

η = 2π1/2

3(3 − e)
[5 − 3(2 − e)]R. (13)

The equation for the trace of the balance is

γ̇ (�xx − �yy ) = Axx + Ayy + Azz, (14)

where, from Saha and Alam [16], at second order,

�xx − �yy = −8(1 + e)ρpν2χ0T

35π1/2
(56R + 7π1/2η) (15)

and

Axx + Ayy + Azz = −4(1 − e2)ρpν2χ0T
3/2

35σπ1/2
(210 + 672R2 + 21η2 + 2π1/2ηR). (16)

Thus, Eq. (14) is

16R(π1/2η + 8R) = 3(1 − e)(10 + 32R2 + η2 + 8π1/2ηR), (17)

where the Garzó-Dufty [20] theory involves only the first of the last four terms on the right, with a
slightly different dependence on e.

Equations (13) and (17) determine η and R. Consequently, in both theories, η is proportional to
R [Eq. (13)], R depends only on e [Eq. (17)], and the fluidity is independent of ν [Eq. (7)]. This
explains the plateau in the predictions as random close packing is approached in Fig. 1.

The question is then what induces the drop in the dimensionless fluidity of Fig. 1. It has been
suggested [8] that in an Eyring-like [13] fluctuation-activated model of dense flows, the drop has to
do with the decrease of the fraction of sites able to shear with increases in the solid volume fraction.
This description might apply to flows of sufficiently rigid particles at solid volume fractions beyond
a value at which random aggregates of spheres develop a rate-independent component to the stresses
[21,22]. Another way to obtain the drop is to employ different exponents for the singularities in the
volume fraction dependence of the pressure, shear stress, and temperature. Vescovi and Luding [19]
employ functions obtained through fits to numerical simulations to do this. Here we provide an
alternative explanation based on kinetic theory that highlights the mechanisms that are responsible
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for the observed behavior. It is based on the existence of velocity correlations, their influence on
the collisional dissipation of the flow, and the presence of anisotropy in the second moment of the
velocity fluctuations.

Extended kinetic theory [23–25] takes the correlations into account by introducing a phenomeno-
logical correlation length L in the collisional rate of dissipation. Its expression, based on a heuristic
balance between correlation induced by shear and randomization induced by collisions [24] and,
then a fit to numerical simulations, based on the Garzo-Dufty theory [26,27], is

L

σ
=

[
2J

15(1 − e2)

]1/2[26(1 − e)

15

(
ν − 0.49

0.64 − ν

)
+ 1

]3/2
σ |γ̇ |
T 1/2

≡ 8f0|R|, (18)

where J = (1 + e)/2 + π (1 + e)2(3e − 1)/[96 − 24(1 − e)2 − 20(1 − e2)].
Here we apply this idea to the second-order theory by incorporating the correlation length into

all of the components of the collisional production of second moment. In this case, the right-hand
sides of both Eqs. (12) and (17) are divided by L/σ = 8f0|R| and become

80π1/2f0|R|R = 6π1/2(2 − e)R + 3(3 − e)η (19)

and

128f0|R|R(π1/2η + 8R) = 3(1 − e)(10 + 32R2 + η2 + 8π1/2ηR). (20)

The function f0, which is singular at random close packing, then influences the determination of η

in terms of R:

η = 2π1/2

3(3 − e)
[40f0|R| − 3(2 − e)]R. (21)

When Eq. (21) is used in the energy balance (20), the terms proportional to f 2
0 R4 dominate and,

at lowest order,

|R| = 1

f
1/2
0

{
9(3 − e)2(1 − e)

8π [128(3 − e) − 80(1 − e)]

}1/4

. (22)

Then, with Eqs. (21) and (22),

η

R
= 80π1/2

3(3 − e)

{
9(3 − e)2(1 − e)

8π [128(3 − e) − 80(1 − e)]

}1/4

f
1/2
0 . (23)

As random close packing is approached, Eqs. (21) and (22) show that η goes to a constant and
R goes to zero. That is, as a consequence of the increase of velocity correlations, dissipation is
diminished and, in the limit, the temperature increases without bound. Thus, in Eq. (7) the term
proportional to η/R dominates and, in the limit, the dimensionless fluidity goes to zero.

Alternatively, from Eq. (3), the dimensionless fluidity may be written as
σg

T 1/2
= 8

p

s
R, (24)

where
p

s
= f1

f2

1

8R
. (25)

As random close packing is approached, the stress ratio becomes proportional to η and therefore
a constant. That is, because of the anisotropy in the second moment, the pressure and the shear
stress behave in the same way with the temperature and the dimensionless fluidity in Eq. (24) is
proportional to R.

Figure 2 shows a comparison between the predictions of Eq. (7) and the dimensionless fluidity
measured in numerical simulations of steady, homogeneous shearing flows of frictionless spheres
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FIG. 2. Measured (symbols, [17,18]) and predicted [lines, Eqs. (15) and (16)] dimensionless fluidity as
a function of the solid volume fraction in steady, homogeneous shearing flows of frictionless spheres with
coefficient of collisional restitution equal to 0.7 (circles and solid line), 0.8 (squares and dashed line), 0.9
(diamonds and dot-dashed line), and 0.95 (triangles and dotted line).

at different values of the coefficient of restitution. Given the number of approximations made in the
course of the present analysis, the agreement seems satisfactory.

III. CONCLUSION

We have shown that the granular fluidity, made dimensionless with the square root of the granular
temperature, is well predicted by kinetic theory based on the assumption of molecular chaos over a
wide range of volume fractions. We have also shown that the departures in these predictions from
the data at volume fractions approaching 0.64 can be understood as being due to the reduction of
the dissipation due to the velocity correlations and the contribution of the anisotropy of the second
moment to the shear stress. The former causes the temperature to increase without bound; the latter
ensures that the pressure and shear stress behave in the same way with temperature, in contrast,
for example, to the linear theory of Garzó and Dufty [20]. This combination of mechanisms can
also influence aspects of the material response other than the fluidity, such as the viscosity and the
differences in normal stresses in simple shearing. The determination of how they are influenced is a
natural extension of the present work. Such consideration is likely to have relevance in the shearing
of dense colloids [28], and non-Brownian suspensions [29]. Finally, it remains to understand how
to extend the present analysis to frictional particles and inhomogeneous flows [8].
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